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Summary. Statistical techniques for detection of major 
loci and for making inferences about major locus param- 
eters such as genotypic frequencies, effects and gene 
action from field-collected data are presented. In field 
data, major genotypic effects are likely to be masked by 
a large number of environmental differences in addition 
to additive and nonadditive polygenic effects. A graphical 
technique and a procedure for discriminating among 
genetic hypotheses based on a mixed model accounting 
for all these factors are proposed. The methods are illus- 
trated by using simulated data. 
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Introduction 

Animal breeding theory for quantitative traits is based on 
the polygenic model of inheritance. It assumes the breed- 
ing value of an individual to be the sum of small and 
additive effects of many genes. Polygenie traits comprise 
continuous measurements on production traits such as 
milk yieId and discontinuous traits with threshold char- 
acter (Falconer 1965). Many secondary traits (reproduc- 
tion and health) are considered as threshold characters. 
However, Hanset (1982) and Roberts and Smith (1982) 
have reviewed examples of single loci accounting for an 
appreciable amount of the genetic variance in quantita- 
tive traits (major loci). Hanset (1982) conjectured that 
twinning, calving ease, size and resistance to metabolic, 

* Journal Paper No. J-12733 of the Iowa Agriculture and Home 
Economics Experiment Station, Ames, Iowa, Project No. 1901 
** Present address: Department of Dairy S~ience, Virginia 
Polytechnic Institute and State University, Blacksburg, VA 24061, 
USA 

infectious and parasitic diseases are "candidates" for 
mixed major gene and polygenic inheritance and re- 
quired statistical analysis to detect major genes. Famula 
(1986) suggested an application of major gene indices 
(Karlin et al. 1979) to animal breeding data. In human 
genetics, likelihood-based tests of genetic hypotheses 
(Elton 1987) are employed to discriminate among modes 
of inheritance. These approaches are computationally 
demanding, and it is not obvious how to proceed when 
major gene effects are masked by a large number of 
environmental differences in addition to additive and 
nonadditive potygenic variation. 

In this paper, alternative techniques are presented for 
detection of major loci and for making inferences about 
the number of major genotypes, major genotypic fre- 
quencies, effects and maj or gene action from field-collect- 
ed data. 

Graphical method for detecting a major locus 

D a t a  

Consider the model 

Yik : gk + A'i0 + elk (1) 

where Yik is an observation on the i th individual, gk is the 
k th major genotypic value, O' = [ [J', u'] is a vector of en- 
vironmental effects (~) and polygenic effects (u), u may be 
partitioned into additive (ul) and nonadditive (u2) effects 
according to Henderson (1985) with n ~ N ( O ,  G), A i is 
the i th row of the incidence matrix A = [X, Z], and elk is 

2 If n is a vector of additive a residual with var(eik) = a~. 
polygenic effects, G = A a z with A being a matrix of addi- 
tive genetic relationships. Denote known major genotype 
membership by I~ = k with k ~ (1 . . . . .  m). Then, assuming 
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normali ty 

Yi I Ii = k, g, 0, a 2 ~ N(g  k q- A' i 0, o-2). (2) 

With unknown major  genotypic membership I~, Yl has an 
m-component  mixture distribution with mean 

E~(Yl I P~, g, 0, (r 2) = ~ p(I~ = k) gk + A; 0 (3) 
k=l 

and variance 
m 

-- 2 varh(y~lp~,g, 0,(r~)= 5Z p ( I i = k ) ( g  k # 0 2 + a e ,  (4) 
k=l 

where pi is an m x 1 vector with elements p(I~ = k), the 
probabil i ty that the i 'h individual has major  genotype 

memberships  k (k = 1 . . . . .  m) and /h = '~- P(Ii = k)gk" 
k=l 

Also, h denotes expectation and variance with respect to 
the density 

h(Yl l Pl, g, 0, r 2) = ~ p(I~ = k) f(y~ l I~ = k, g, 0, ~r 2) (5) 
k=l 

where h (.) is an m-component  mixture density and f(.) is 
the  k th component  density of the distribution in [2]. 

Graphical technique 

A variety of graphical techniques dealing with mixture 
data have been developed (Titterington et al. 1985). The 
data  situation in (5) suggests using such techniques to 
obtain evidence for the presence of several major genotypic 
means (gk). For  mixtures, the normal  quantile-quantile 
(Q-Q) plot has a typical configuration and is very com- 
petitive with respect to sensitivity to departures from 
normality. A numerical procedure based on the plot can 
be devised to estimate component  means (major genotypic 
means) and mixing weights (major genotypic frequencies). 
The Q-Q plot and comparable  methods are discussed in 
the context of detecting mixtures by Harding (1949), 
Fowlkes (1979) and Titterington et al. (1985). 

The theoretical Q-Q plot 

Let x and y be random variables with x ~ N ( 0 ,  1) and 
y-~N(#y ,  tr2). Then, y = py + tyyX and 6 y / r x  = ay. Also, 
let F - t  (p) and 4 - 1  (p) denote the inverse cumulative 
distribution function (cdf) of y and the standard normal  
deviate x, and P be the cumulative probabil i ty (0 < P < 1). 
Plotting F -  1 (p) = y against 4 -  ~ (P) = x gives a straight 
line with intercept #y and slope try. Now, if y has a mixture 
distribution with m normal  components,  its cdf is 

V(y)--  ~. p k 4 ~ Y - - / ~  
k=l ~ trk ) 

(6) 

y=F-~(p) 

f l J  f l -  

~ x:,~-I(p) 

Fig. 1. The theoretical quantile-quantile plot for a three-normal- 
component mixture 

where Pk is the mixing weight for the k 'h component  and 
4 (.) denotes the standard normal integral. It follows that 

8y e -  xZ/2 
- -  - ( 7 )  

~X ~ Pk e--(Y--'Uk)2/(20"2) 
k=l 

which is clearly a nonlinear relationship. In this situation, 
the Q-Q plot has a characteristic s-shaped configuration 
(Fowlkes 1979) illustrated for m = 3 in Fig. 1. 

This plot has two points of inflection and three 
asymptotes indicated by straight lines corresponding to 
the normal  components.  Harding (1949) uses the points 
of inflection, the slopes and the intercepts of the asymp- 
totes to obtain estimates of the mixing weights, compo-  
nent means and standard deviations of the component  
distribution directly from the plot. 

The practical Q-Q plot 

In practice, the Q-Q plot is obtained by using packages 
'such as Univariate in SAS or probabili ty graph paper. In 
the empirical version of the theoretical F - 1  (p) versus 
4 - 1  (p) plot, the ordered data points Yl (Yl < Yz < --- --< YN) 
referred to as mixture quantiles are plotted against the 
standard normal  quantiles 4>- 1 (qi) with qi = i [ (N + 1), 
i = 1 . . . . .  N, and N being the sample size. Different plot- 
ting positions (qi values) have been suggested (Kimball 
1960), but no important  differences were found (Looney 
and Gulledge 1985). I f N  is large, the data are parti t ioned 
into histogram intervals and the means of the intervals Yi 

i 
are plotted against 4 - 1  (qi), with qi = Z nj [ N where nj is 

j=l 
the number of observations in the j th interval. 

Application to animal breeding data 

Because of the superposition of systematic environmental 
and genetic factors, the elements of 0 in model (1), the 
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observed phenotypes cannot be used as mixture quantities 
to construct the Q-Q plot. Hence, we fit the linear model 
ignoring major  genotypes: 

y = A 0 + e = X p + Z u + e  (8) 

where ~ is a vector of environmental effects and u is a 
vector of additive genetic effects. Based on model (8), Best 
Linear Unbiased Predictions (Henderson 1973) of  u, (fi), 
are obtained for continuous data. Estimates of u on an 
underlying scale can be obtained from categorical data by 
using the method of Gianola and Foulley (1983). The u's 
or u~'s represent additive sire effects (half of the sire's 
breeding value transmitted to its progeny) or breeding 
values of individuals. Consider, for example, a major  locus 
with two alleUes A and A. It can be quickly verified that the 
genetic difference between the progeny of all sires having 
major  genotypes gAA and g ~  is t + d [ p ( a ) - p ( A ) ] ,  with d 
being the degree of dominance and t = g ^ A - - g , ,  the dis- 
placement effect. Hence, for a not to small t, examining the 
u's should reveal the existence of a major locus. With 
unbalanced data the variance of the i ~h element in fi is 
var(fii) = a z - var (ul I Y), where vat (ui[ y) is the i th diagonal 

F , - 1 ~ 7  -1  1 1 
element of L I z  MZ + A with M = R -  - R -  

A 
X (X' R -  1 X)-  ~ X' R -  1, A is the matrix of additive genetic 
~elationships among the elements in u (Henderson 1973) 
and R = var(e). Then, the quantities fil I x /a~ - var(uil y) 
are used as mixture quantiles to construct the Q-Q plot. It 
should be noted that these quantities are dependent, i.e., 
the variance-covariance matrix of fi has nonzero off- 
diagonal elements. Transformation to uncorrelated vari- 
ables requires taking linear combinations of the fi's, which 
would affect the configuration of the Q-Q plot. This prob- 
lem also arises in testing normality with residuals esti- 
mated from regression analysis, and the possibility of ig- 
noting the dependence has been supported by Pierce and 
Gray (1982) and Pierce (1985). 

estimated by using a nonlinear least-squares algorithm. 
An improved fit and accommodat ion  of unequal vari- 
ances could be achieved by replacing the numera tor  in (9) 
by b 9 q-bl0X and b l l  +ba2x ,  respectively. This would 
increase the number  of unknown parameters  from 8 to 12 
and would only be suitable for large sample sizes 
( N ~  100). 

Second derivatives of [9] with respect to x are: 

b]  [e- b, Cb~-,)]2 ~2y b]  e -b" ~b6-~) 

(~x) 2 = [b3 _ eb4fb#_x)] 2 -b 2 [b3 _ ebdb6_x)]3 

b~ e -b ' (x-b ' )  b~ [e-b'(*-b~)] z 
- -  b2 

[bs + e b ' ( x - b 7 ) ]  2 [bs -I- e b ' ( x - b 7 ) ]  3 " 
(10) 

Setting (10) equal to zero gives a polynomial  in x with 
roots x* and x*. Using Harding  (1949), estimates of the 
mixing weights (in this case, genotype frequencies) are 

t51=r 1 5 z = ~ ( x * ) - O l  and f ) 3 = l - O 2 - f ~ l .  (11) 

Fowlkes (1979) used a similar procedure for a two- 
component  mixture and calculated the bias in estimates 
from (11). Next, the ordered sample of size N is partitioned 
into three subsets Yl, Y2, and Y3 of sizes [Npl] ,  [Np2], 
and [Np3], respectively, where [N Pl] stands for integer 
(Npi + 0.5). The empirical s tandard normal  quantiles are 
rescaled by 

xjl = q~-l(qaj ) = r  0 and 

Xjk=@-~(qkj)  = r  q j - -  32 Pl P , k = 2 , 3 .  
| = 1  

Based on the model Yi~ = #k + aXik + elk, /~k (k = 1, 2, 3) 
and a are estimated by ordinary least-squares (OLS) 
separately from the three partit ions of the sample. Given 
the estimates Pk and ~, with r denoting the standard 
normal  density, the quantities 

Estimation of major genotypic means and frequencies 

Harding (1949) suggested using the points of inflection of 
the Q-Q plot configuration to obtain a crude estimation of 
the mixing weights of the components. Because the differ- 
ential equation in (7) has no explicit solution, the points of 
inflection are determined by first finding an approximate 
fit of the Q-Q plot configuration and then setting its sec- 
ond derivatives with respect to x equal to zero. After some 
experimentation, the following function was used to fit the 
Q-Q plot configuration of a three-component mixture: 

1 1 
y - - b 1  +b2x-~  b3_e_b,(br_x)  § bs +e_b,~x_b, ) . (9) 

In [9], the y's (x's) are the mixture (standard normal) 
quantiles and the bi's are unknown parameters  that were 

Pk r - /~k) /d]  
p(I i = k [ y 0 =  3 , k = 1 , 2 , 3  (12) 

Y'. 151 ~b [(Yl --/~,)/a] 
1=1 

are computed for all observations. If max p (I s = k [ Yi) < g 
(e.g., e=0.8) ,  the i ~h observation was discarded. This 
occurs for yi's located in the overlapping regions of neigh- 
boring components.  With the remaining observations, 
the major  genotypic means are estimated as 

1 IN#k] 

- -  Z Yklao (13) 
gk=fi-I" [Nt3k] i=1 

with Yki = f i k i / ~ ,  the uki's being breeding values 
(2 x sire effects,), p is an overall mean, and when assum- 
ing mainly additive gene action at the major  locus. 
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D i s c r i m i n a t i o n  b e t w e e n  genet ic  h y p o t h e s e s  

In finite mixture models such as (5), hypothesis testing 
based on maximum likelihood inference has been em- 
ployed when the number of components is uncertain 
(Aitkin and Rubin 1985; Titterington et al. 1985). Likeli- 
hood ratio tests are used in segregation analysis (Elston 
and Stewart 1971) and complex segregation analysis 
(Morton and McLean 1974; Bonney 1986; Elston 1987) 
to discriminate between different modes of inheritance. 
The main interest is (i) to test whether the data suggest 
absence or presence of major locus, (ii) to find the "most 
likely" number of major genotypes, and (iii) to make 
inference about the gene action (additive, dominant) at 
the major  locus. These testing problems involve the 
following hypotheses: 

(i) Ho: gl = g2 . . . . .  gm versus 

HA: gk4:gt  fora l l  / + k s { 1  . . . . .  m}, 

(ii) H0: g l + g 2 4 : ' ' ' 4 : g m  versus 

HA: g 1 4 : g 2 + . . . 4 : g m = g m + l  . . . .  g~,, m ' > m ,  

(iii) H0: g A a = g ~ + 0 . 5 t  versus 

HA: g A ~ = g ~ + d t ,  d+0.5 ,  d>__0 

assuming a major locus with genotypes gAA, gA,," Addi- 
tive gene action implies that gAa = g~a + 0.5 t. 

In complex segregation analysis (Morton and McLean 
1974; Bonney 1986; Elston 1987), choosing between H 0 
and H A is based on comparing likelihoods maximized 
numerically over the parameter spaces under H o and H A. 

Typically, the likelihoods are specified for pedigrees of 
limited size and a small number of unknown parameters 
(e.g., 10). Hoeschele (1988) considered analyzing field- 
collected data based on model (1) with the vector of ex- 
planatory factors 0 of large order and interest in obtain- 
ing estimates for polygenic effects (n). 

A method of simultaneously estimating major geno- 
typic values (g), frequencies (p), polygenic effects (u), 
environmental effects (fl), and variance components (a', 
e.g., ~r'= [a, z, aeZ]) has been proposed (Hoeschele 1988). 
Using Bayes' theorem (Box and Tiao 1973) and assuming 
a known, the parameters are estimated by maximizing 
the posterior density 

h(p,g, fl, u[a,y) ocg(y[p,g, fl, u,a)f(p,g,~,u), (14) 

which is proportional  to the product  of likelihood g( . )  
and prior density f(.  ). It is assumed that p, g, r ,  and u are 
independent a priori and that prior knowledge on p, g, 
and fl is vague, meaning that each value is equally likely 
a priori and implying f(p, g, r,  n) oc f(u). If u is a vector of 
additive polygenic effects, n ~  N(0, A a 2) by the central 
limit theorem. 

Now consider testing problem (i). Under Ho, the vec- 
tor of unknown parameters is ~,~ = [/z, if, u'], where p is 

the overall mean. Under HA, the vector of unknown 
parameters is 7~ = [P', g', if, u']. The ratio of "averaged" 
likelihoods, i.e., likelihoods unconditional with respect to 
u, is used for discriminating between H 0 and HA. Using 
(14), this is 

sup ~ g(y[ #, r,  u; tr~ 2) f(u) a 2) du 

A l a =  g ,P  Ru ( 1 5 )  

sup ~ g(ylp,  g, /~,u;G~)f(ula~)du 
p , g , ~  Ro 

If the likelihood ratio statistic - 2  log Ala were asymp- 
totically chi-square distributed under Ho, a test for H o 
versus HA would consists of rejecting H o if 

2 - 2 log Ala = 2 [log L(HA) - log L(H0) ] > Z~,tdim rA- dim ~o)' 

where ~ is the size of the test (Lindgren 1976), and L(Ho) 
and L(HA) denote likelihoods maximized under H0 and 
HA, respectively. Application of this test involves prob- 
lems discussed below. 

Computation of Ala for continuous data assuming 
normality is illustrated in the Appendix. In segregation 
analysis using regressive models (Bonney 1986), the de- 
nominator of (15) is maximized numerically over the 
range of g and ft. However, in analyses of field data, the 
order of y and fl can be large. Then, computation of (A.5) 
and, hence, of (15) becomes difficult, and we might con- 
sider the following large sample ( N ~  ~ )  approximation: 

sup g(Y[ P,/~, n; a 2) f(n I a~) 

A~*a = u,~, ~ (16) 
sup g(YlP, g,/~, u; cr~ z) f(ula~) 

p, g, lff, u 

The approximation (16) will be close to Ata only if the 
likelihood is very peaked (N--, ~ )  with most of its proba- 
bility mass concentrated over a small region about the 
ML estimates. 

Also, exact alternatives to (15) need to be considered 
for two reasons. First, in testing problems (i) and (ii), 
under H o some elements o fp  are zero. Because zero is the 
boundary of the parameter space of p, - 2  In A~a will not 
be asymptotically z2-distributed under H o. This problem 
can be overcome by replacing the denominator of (15) by 

sup ~ [ ~ g(Y [ P, g, r ,  u, a 2) f(p) dp] f(u [a 2) du. 
g, ~ R u [_Rp 

However, this requires specifying the form of a proper 
prior distribution of p, which is the Dirichlet distribution 
(Hoeschele 1988) and its parameters. The additional inte- 
gration also increases the computational difficulty. Alter- 
natively, consider a transformation of p, t -  1 (p) = e, with 
ck e [a, b], k E {1, . . . ,  m}, and t -  1(0) 4= a, t -  1(1) :~ b, and 
replace the denominator of (15) by 

�9 2 ~ f(uta~)} [~P,  sup ~ {g(yIp, g, fl, u,a~)[p=t- ~) 
p, g, t~ Ru I ~g 

o 



Akaike (1977) suggested computing the information 
criteria AIC(Ho) and ASIC(HA) with 

0.5 [AIC (Ho) -  AIC (HA)] = log L(HA) - log L (Ho) 
+ dim Yo - dim 76. 

A positive difference, i.e., AIC(HA)< AIC(Ho), would 
suggest choosing HA in the light of the data. Titterington 
et al. (1985) and Akaike (1977) report this criterion to be 
useful in many practical situations. 

Application to simulated data 

A small simulation study was conducted to illustrate and 
examine the proposed techniques. 

Data 

Phenotypes were generated using a mixed model includ- 
ing herd-year-season effect (hysi), major genotype (gi), 
polygenic effect (uk) and residual, so that 

Yijkl = hysi + g~ + Uk + e i jk l  �9 (17) 

Dispersion assumptions were: 

v a r ( Y i j k l  ) = 0 -2 = O'h2ys + 6g 

3 
trg 2 =  ~ p j ( g j _ _ # g ) 2  

5=1 

{uk} ~ N  0, 1 4 if the uk's were sire effects (sire model), 

{Uk} "" N(0, A a 2) if the Uk'S were breeding values 
(animal model), 

{hysi}~N(0, Ia~), and {eijkl},-~N(0, I a~). 

Discontinuous phenotypes were obtained by using [17] 
and 

Y, jk ,=  {~ ifotherwiseYijkl<~-t (0"7) 

where 0.7 is the frequency in the category coded by 1. 
The following parameter sets were used: 
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where p(A) is the frequency of allele A at a major 
locus with alleles A and a, h 2 is heritability with 
h 2 ( a 2 +  2 2 2_]_ 2 2 = 0"u)/(ffhy s + 0-g 0" u + ao), a n d  t h e  displace- 
ment effect t =gAA-  gaa was computed assuming addi- 
tive gene action. Six data sets with unbalanced design 
were generated: 

Data Phenotypes Sample Model Param- 
set size eter set 

I continuous 5,000 sire model (1) 
II continuous 5,000 sire model (2) 

III continuous 5,000 sire model (3) 
IV continuous 150 animal model (1) 
V continuous 150 animal model (2) 

VI discontinuous 5,000 sire model (1) 

Data sets generated by the sire model included 100 sires. 

Graphical technique 

For data sets I, II, III, IV and VI, the polygenic effects 
(u's) were estimated by fitting a mixed model (Henderson 
1973; Gianola and Foulley 1983) ignoring the major 
genotypes (g) and standardized as described earlier. Let 
fi* be the ordered vector of standardized estimates of u 
with fit < fi~ <-- -  < fi* (sample quantiles) and x the vec- 
tor of standard normal quantiles with xi=4~-l(qi) ,  

i 
q i = q +  1 '  i =  1 . . . . .  q. The Q-Q plots are shown in 

Fig. 2. Test statistics for assessing departures from nor- 
mality such as the Q-Q plot correlation coefficient R 
(Johnson and Wichern 1982) and the Anderson-Darling 
statistic D (Lindgren 1976) were also computed and found 
significant except for data set III, where D was not signifi- 
cant. These tests have to be interpreted with caution be- 
cause of the lack of independence of the sample quantiles. 

The plots for data sets I, II, IV, and VI show evidence 
for the presence of a mixture due to major genotypes 
when compared with the plot for data set III. However, 
they demonstrate that it is hardly possible to obtain rea- 
sonable estimates of the means (#k = gk) and frequencies 
(Pk) directly from the plot. Also, it becomes apparent that 
the plot helps determine the number of components m 
only when m is small, in particular, for m = 3. 

2 2 2 h 2 t/2 Param- p(A) if2 0"2ys tTg O" u t7 e 
eter set % 

(1) 0.3 502 252 22.42 11.22 35.42 25 35.4 
=0.2a 2 

(2) 0.3 502 252 18.02 17.32 35.42 25 27.8 
=0,130 .2 

(3) 0.3 46,72 252 0.0 17.32 35.42 14 0.0 

Estimates from the Q-Q plot sample quantiles 

When inspecting the graphs in Fig. 2, one may conclude 
that three components (major genotypes) exist with 
the approximate location of the two points of inflection 
indicated by arrows. Let x 1 and x 2 be the approximate 
x-values at the points of inflection. Next, the vector of 
ordered sample quantiles ~* was partitioned in three sub- 
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vectors according to the frequencies estimated from x 1 
and x 2 by using (11). Let the mean of the elements of the 
subvectors be # i ,  #2, and #3. Then, by using the asymp- 
totes (x ~ - ~ ,  x ~ ~) ,  starting values for the parameters 
in (9) were computed as 

b~ ~ =/~2, 

b[2 ~ = 6, 

b~ ~ = 1 / (g~ - ~ ) ,  

bt8 ~ = 1/(/23 - ,t72), 

b~6 ~ = ~ -  ' ( p * )  = x * ,  

btO] = q~-i (p, + Pl) = x*, 

btm: from (9) and the other start- 
ing values or from a theoreti- 
cal plot, 

bs:  as b+. 

Starting values for b+ and bs cannot be obtained as easily 
as for the other parameters because one can show, using 
(7), that b+ and bs are rather complicated expressions, 
depending on differences in component means, variances 
and mixing weights. Deriving initial guesses on b 4 and b5 
from a theoretical Q-Q plot would involve using/~1, #2, 
#3, a and an initial pair (x, y) in (7) to generate a sequence 
of (x, y) pairs by solving this ordinary differential equa- 
tion. Next, y's would be computed by using the approxi- 
mation (9) and compared with the exact solutions to (7) 
for different b+ and b5 values. Given the starting values, 
the parameters were estimated by nonlinear least-squares 
fitting and used in (10) to determine xl and x 2 more 
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Table 1. Estimates of major genotypic means and frequencies 
from the Q-Q plot sample quantiles 

Param- Data set I Data set II Data set VI 
eters 

True Esti- True Esti- True Esti- 
values mates values mates values mates 

Pl 0.09 0.058 0.09 0.021 0.09 0.045 
P2 0.42 0.406 0.42 0.411 0.42 0.395 
P3 0.49 0.549 0 . 4 9  0.568 0A9 0.560 
gl 414.0 411.9 422.0 411.0 --0.868 --0.687 
g2 430.0 447.0 450.0 447.0 0,0 0.310 
ga 486.0 478.8 478.0 466.6 0.868 0.836 

Table 2. Approximate criterion for discriminating between poly- 
genic and mixed inheritance 

Criterion Data set 

I I1 III IV V 

AIC(A*~) 59.3 10.1 1,1 76,3 15.1 

precisely. Next, estimates of Pk and gk (k = 1, 2, 3) were 
obtained from (11) and (13). Of course, this technique can 
only provide very crude estimates of Pk and gk being 
considerably biased, in particular for very different Pk 
values, with the smallest frequency being underestimated 
(Fowlkes 1979). For  some data sets, estimates are listed in 
Table 1. 

Discrimination between genetic hypotheses 

The ability to discriminate between polygenic and mixed 
inheritance in testing problem (i) was examined by com- 
puting 0.5 [AIC (Ho) - AIC (HA)] using the approxima- 
tion (16) which is denoted by AIC(A]a ). 

When the major locus accounted for 20% of ap 2, the 
criterion clearly suggested a better explanation of the data 
by mixed inheritance. Evidence for the presence of major 
genotypes was considerably reduced when the major 
locus accounted for only 13 % of a2; for data set ItI, there 
was no evidence for a major locus. 

Conclusion 

index (Karlin et al. 1979). However, the major gene index 
was able to detect a major locus only if it contributed 
more than 20% of the phenotypic variation and could 
not provide information about  the number of major  
genotypes, their effects and frequencies. When extended 
to several generations, the major gene index may become 
more sensitive and might be used to check if the nature 
of the factor causing a mixture is truly genetic and not 
environmental  Crude estimates of the major  genotypic 
values and freuqencies obtained by the technique pro- 
posed in this paper may serve as starting values for the 
iterative method of estimating major genotypic values, 
frequencies, polygenic effects and variance components 
as proposed by Hoeschele (1988). 

The methods assume normal distribution of the poly- 
genic effects conditional on major genotype in the ob- 
served continuous scale or in the unobserved underlying 
scale (of discontinuous data). Departures from normality 
would affect both the Q-Q plot configuration (nonlinear- 
ities in the components) and the discrimination between 
genetic hypotheses. Therefore, for continuous data, Box- 
Cox transformations or estimation of the power transfor- 
mation (Gianola et al. 1987) would need to be considered. 
It is also crucial to correctly specify the mixed model in 
(1), e.g., to account for nonadditive genetic 
effects if necessary. 

One might also consider techniques for assessing 
departure from multivariate normality such as chi-square 
probability and scatter plots (Andrews et al. 1973) and 
chi-square tests (Moore and Stubblebine 1976). However, 
interpretation of a systematic curvature in a graph indi- 
cating a mixture wiU be less clear in the multivariate than 
in the univariate case, where crude parameter estimates 
can be obtained from the Q-Q plot. 

In conclusion, the simulation results indicate that the 
proposed techniques may be potentially useful for 
suggesting existence and providing information about 
major genotypes in field data. 
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Elston (1988) reviewed several approaches for discrimi- 
nation between alternative modes of inheritance with 
pedigree data, mainly includind complex segregation 
analysis (e.g., Mor ton  and McLean 1974) and regressive 
models (Bonney 1986). In animal breeding, these methods 
seem very useful for analyzing experimental data but not 
(large) sets of  field-collected data (Hoeschele 1988). For  
field data, Famula (1986) suggested using a major gene 

Appendix 

Under normality, the density functions in (15) are: 

g(yl#,/~, u; o~) 

1 
- (2 n) ~/21 R 11/2 exp {-- �89 re- 2 [(y _ 1 ~ - X/~ - Z fi)' 

- ( y - - l ~ - X f l - - Z f i ) + ( u - - f i ) Z ' Z ( u - - f i ) ] } ,  (A l} 
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g(Y I P, g, fl, u; a 2) 

i 
- (2 n) N/z I R 11/2 ~ p ( I  = K)exp {--�89 -z [(y - W  k g - X/] - Z fi)' 

�9 ( y - W k g - X f l - Z f i ) + ( u - f i ) Z ' Z ( u - f i ) ] } ,  (A.2) 

and 
1 

f(u [ O'u 2) - -  (2 7C) q/2 I G ji/2 exp { -- �89 6~ 2 u' A-  1 u }. (A.3) 

Above, N = dim(y), q = dim(u), R = l a~, G = Aa~ and 

Z p ( I = K ) =  ~ ... ~ p ( I i = k l  . . . . .  IN=kN) 
K k l = l  k N - - I  

is a nested sum. 
Using results of the multivariate normal theory (Zellner 

1971), we obtain the numerator of (15): 

g(Y I/~, r u, au 2) f(u I a~) du 
R u 

I 

-- (2n)N/ZIG]I/2(a2)N/2IZ, Z + A X2l-1/z 

= e x p { - - 2 ~ - 2 [ ( y - - l # - - X f l - - Z f i ) ' ( y - - 1  # - X ~ - Z f i )  

+ f i ' (Z'  Z + A-  ~ 2)fi + f i 'Z 'Zf i ' l }  (A.4) 

where 

f i = ( Z ' Z  + A  ' 2)-x Z ' (y - -  1]~-- Xfl), 

f i = ( Z ' Z ) - l Z ' ( y - 1 / t - X f l ) ,  and 2 = a 2 / a  2. 

It can be shown that the supremum of (A.4) is achieved at 

/~* = [X*'X* - X * ' Z ( Z ' Z  + A-  x 2 ) - '  Z'X*] -x 

. [ X * y ' -  X * ' Z ( Z ' Z  + A-1 2)-1Z']  y 

= [X*'V-~ X*]-I  X * ' V - 1  y 

with 

/ ]* '=[ /~ , f f ] ,  X*=[1 ,  X] and V = Z G Z ' + I a  2. 

Similarly, the denominator of (15) is 

S g(YlP, g, fl, u, a2)f(ula2) du 
Ru 

1 

- (2n) N/21GI1/2(a2)N/z I Z '  Z + A-  1 ;t l- 1/2 ~ p(I = K) 

• exp {--�89 a~- 2 [(y --Wk g - X f l - Z  f i ) ' (y - -Wkg--2f l -  Z fi) 

+ f i ( Z ' Z +  A -~ 2)6 + f iZ 'Zfi ]} ,  (A.5) 

where 

f i = ( Z ' Z + A - 1 2 ) - l Z ' ( y - - W k g  - Xfl) and 

6 = (Z 'Z)  ~ Z ' (y - -  Wkg--  X~).  
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